

Chipbreaker:

HCX: Strong cutting edge. Medium to roughing applications in steels and cast irons

SCX: Sharp cutting edge. Medium to finishing application in steels, stainless steels, hardened steels, and super alloys

CCX: Strong cutting edge for cast iron applications

LCX: Positive up sharp cutting edge. Light finishing to medium roughing applications in non ferrous materials

ISO	MATERIAL	HARDNESS	CHIPBREAKER	GRADE	Vc (SFM)*	Fz (INCH PER TOOTH)*
P	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536	≤ 275 BHN or ≤ 28 HRC	нсх	HP470	230-800	.003010
	ALLOY STEELS 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 17-4 PH	≤ 375 BHN or ≤ 40 HRC			230-700	.003008
M	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	≤ 275 BHN or ≤ 28 HRC	scx	HM470	200-600	.003009
	STAINLESS STEELS (DIFFICULT) 304, 304L, 316, 316L	≤ 275 BHN or ≤ 28 HRC			200-600	.003009
K	GRAY IRONS Class 20, 30, 40, 50, 60, G3000, G3500	≤ 220 BHN or ≤ 19 HRC	ссх / нсх	HK430	400 - 950	.004015
	DUCTILE IRONS D&M series, 250, 300, 350, 400, 60-40-18, 65-45-12	≤ 260 BHN or ≤ 26 HRC			300 - 700	.003011
N	NON-FERROUS Aluminum, Aluminum cast, Brass, Copper, Bronze, Non Metallic	≤ 271 BHN or ≤ 28 HRC	LCX	HK430	400 - 1000	.006018
H	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	≤ 375 BHN or ≤ 55 HRC	SCX / HCX	HS470	80-250	.003009
5	HR SUPER ALLOYS Inconel 718, Waspaloy, Hastelloy, Inconel 625, Stellite 31, Haynes 25, Rene 41	≤ 275 BHN or ≤ 28 HRC	scx	HS470	60 - 200	.0025007
	TITANIUM 6AL-4V, ASTM 1, 2, 3, 6AL-2S	≤ 275 BHN or ≤ 28 HRC			90 - 350	.003010
*LOWER Vc AND Fz = MED HEAVY Ap / Ae *HIGHER Vc AND Fz = LIGHT-MED. Ap / Ae						

Recommendations:

- · Keep the cutter constantly engaged, when possible, to reduce enter and exit onto the machined component
- Utilize roll technique around all corners to avoid harsh directional changes
- The width of cut, a,, should be 30% or 70% of DC to ensure maximum efficiency and process security
- Program tool paths around interruptions and holes when possible

Speeds & feeds are starting recommendations only. Factors such as machine type, fixture, tooling rigidity, available horsepower, coolant delivery method and others will affect the performance significantly.